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Abstract

This paper’s main contribution is a Bayesian
hierarchical grounding state prediction model
implemented in an adaptive explainer agent as-
sisting users with analogical problem-solving.
This model lets the agent adapt dialogue
moves regarding previously unmentioned do-
main entities that are similar to the ones al-
ready explained when they are instances of the
same generalised schema in different domains.
Learning such schemata facilitates knowledge
transfer between domains and plays an im-
portant role in analogical reasoning. An ex-
plainer agent should be able to predict to what
extent the explainee has learned to induce a
schema in order to build up on this in the expla-
nation process and make it more cooperative.
This paper describes the approach of hierarchi-
cal grounding state prediction, introduces the
analogy-based explanation generation process
and the agent architecture implemented for this
approach, as well as provides some example
interactions as the first developers’ evaluation
of the system in preparation for upcoming em-
pirical studies.

1 Introduction

Explanations are complex social processes that are
actively shaped by both explainer and explainee
throughout the course of their interaction (Miller,
2019, Rohlfing et al., 2021). Dynamic changes
in the mental states of the explainee pertaining to
their understanding of the explanandum (i.e., the
object of the explanation) should be monitored and
predicted by the explainer based on observable ev-
idence, such as conversational feedback or clari-
fication requests posed. These predictions should
be then used to continuously re-conceptualise the
explanans (i.e., the way in which the explanan-
dum is presented by the explainer during explana-
tion) (Rohlfing et al., 2021). Similar principles can
be applied to human communication in general:
active cooperation of the interlocutors and their

stepwise co-construction of the interaction and the
common ground, i.e., "their mutual, common, or
joint knowledge, beliefs, and suppositions" (Clark,
1996, p. 93), as well as mentalising over relevant
mental states of each other based on observable ev-
idence (Kopp and Krämer, 2021). However, these
principles of cooperative communicative behaviour
are rarely applied in modern dialogue systems.

While explanations in a narrower sense serve as
answers to why?-questions and explain causes of
events, they can also serve other functions such as
providing process narratives or instructions (Miller,
2019). In assistive scenarios, instruction and guid-
ance during problem-solving are important func-
tions of explanations. Analogy-based explanations
specifically can help people transfer knowledge
from one domain to another, for instance, via the
process of schema induction. During this process, a
generalised schema, i.e., "an abstract category that
the individual analogs instantiate in different ways"
(Gick and Holyoak, 1983, p. 8), can be induced
from a range of specific examples and then applied
to a new target domain.

This paper introduces an architecture for an as-
sistive agent that guides the user through the pro-
cess of problem-solving via adaptive explanations.
The agent presents analogous stories from other
domains hinting at the desired solution of the target
problem, and helps the user understand similarities
and differences between these stories, as well as
induce and apply generalised schemata instantiated
in the stories. In order to find good analogies, the
agent uses graph-based knowledge representation
to compare the examples and the target problem
according to structure-mapping theory (Gentner,
1983). In order to be adaptive, the agent bases its
explanation generation on predictions of grounding
state of domain entities (DEs). These predictions
are continuously updated via Bayesian inference.

The main contribution of the current research is
the hierarchical grounding state prediction model.



This approach allows the agent to adapt dialogue
moves regarding previously unmentioned domain
entities if they are related to the ones already ex-
plained via a common schema. The model and the
architecture facilitating this kind of inference will
be described in more detail in section 3, and their
limitations will be discussed in a special section
after the conclusion.

So far, the system has only been tested by the
authors using different types of feedback and ob-
serving the behaviour of the agent. Some example
dialogues showcasing the adaptivity of the system
will be presented in section 4. The empirical evalu-
ation of the system requires a series of laboratory
studies in order to gain a comprehensive under-
standing of the impact of various factors present
during adaptive spoken interaction. These studies
are currently being planned and prepared for by the
authors.

2 Background and related work

2.1 Adaptive explanation generation

With the rise of machine learning and specifically
deep learning, the focus of research on explanations
in human-machine interaction has been primarily
on explanations of artificial systems and their deci-
sions (Mueller et al., 2019). However, often these
explanations are conceptualised and presented in
a one-off and static way that may not be sufficient
for diverse stakeholders interested in them (Suresh
et al., 2021; Lakkaraju et al., 2022). An increasing
amount of research is currently calling for incor-
poration of findings from social and cognitive sci-
ences into explanation generation to make it inter-
active and adaptable towards specific goals, needs,
expertise and changing levels of understanding of
the explainee (Miller, 2019; El-Assady et al., 2019;
Shvo et al., 2020; Sokol and Flach, 2020; Dazeley
et al., 2021; Rohlfing et al., 2021; Lakkaraju et al.,
2022).

The process of explanation generation can be di-
vided into two parts: the cognitive process respon-
sible for the generation of causes, and the social
process responsible for construction and presenta-
tion of the explanans, as well as interpretation of
the signals of explainee’s understanding (Dazeley
et al., 2021). The social process can also be seen as
an interaction pattern consisting of joint actions that
are facilitated by the processes of co-construction
and scaffolding, during which the explainer should
strive to build explanations from the knowledge the

explainee already possesses, yet enrich it with addi-
tional relevant information (Rohlfing et al., 2021).
This work focuses on the social process of expla-
nation generation that can be studied and applied
across a multitude of domains, not just in the field
of explainable artificial intelligence.

An explainer agent incorporating the complexity
of the explanation generation process requires (1)
a rich and dynamic explainee model, describing
relevant mental states and the level of understand-
ing of the explanandum with appropriate granular-
ity, (2) representations of domain knowledge, dia-
logue state and history, as well as (3) capabilities to
continuously reason over these representations to
select explanation strategies, dialogue moves and
content under uncertainty inherent to communica-
tion. Concepts such as Theory of Mind, i.e., the
ability to attribute mental states such as beliefs,
goals and intentions to self and others (Premack
and Woodruff, 1978), mentalising, i.e., the ability
to predict the actions of others based on their de-
sires, knowledge and beliefs (Frith and Frith, 2006),
and common ground play an important role here
(Miller, 2019; Shvo et al., 2020; Kopp and Krämer,
2021; Rohlfing et al., 2021). A major challenge
for this research is the lack of high-quality training
data for explanation dialogues, which means that
the parameters of the models are hard to pre-train
in advance and the system has to be able to adapt
online relying only on the data observed during
interaction.

Hereby, approaches used in older expert and tu-
toring systems can be revisited and adapted. One
example is the EDGE explanation system described
in Cawsey (1993). Here, inference rules are used
to update the level of knowledge of the explainee
stored in the user model. There are direct inference
rules that concern entities under discussion and
indirect inference rules that concern unmentioned
entities. The former are based on the user input
and update the user model, while the latter are con-
ditions that are checked against the user model if
the system requires the corresponding information
to construct an explanation. The system presented
in this paper similarly aims to infer the grounding
state of unmentioned entities, but realises it with a
hierarchical probabilistic model.

Speaking of implemented systems adapting the
social process of explanation generation, here are
some more recent examples. Robrecht and Kopp’s
(2023) SNAPE model uses online planning in



form of Monte Carlo Tree Search to solve a non-
stationary Markov Decision Process for explana-
tion generation, where transition probabilities de-
pend on the level of understanding for concepts
under discussion as observed by the system from
user feedback. Axelsson and Skantze (2023) work
on adaptive presentation. Their agent adapts its
generation behaviour based on the grounding lev-
els of various concepts as inferred from observed
multimodal user feedback and stored in a knowl-
edge graph.

2.2 Models of common ground in dialogue
systems

As previously mentioned, the concept of common
ground is important for adaptive explanation gen-
eration, as well as adaptive dialogue in general.
Empirical evidence suggests that representations of
common ground in humans are richer than a mere
binary of grounded vs. ungrounded, however, these
representations are still required to be efficient to
support real-time language use (Brown-Schmidt,
2012). Stone and Lascarides (2010) distinguish
between two types of grounding models: symbolic
approaches based on discourse coherence and prob-
abilistic approaches based on inference from ob-
served evidence. Both of these approaches have
been used in earlier-generations dialogue systems,
a prominent example of the former is Traum and
Larsson (2003), while the latter was pioneered by
Paek and Horvitz (2000). Stone and Lascarides
(2010), however, point out that both of these ap-
proaches have limitations. For instance, the proba-
bilistic approaches were primarily used to predict
whether the system had understood the user dur-
ing slot-filling, i.e., collecting of the parameters
of the user’s query. Yet for cooperative dialogue,
predicting whether the user had understood the
system is equally important. Thus Stone and Las-
carides (2010) integrate both types of approaches
in a theoretical framework consisting of a dynamic
Bayesian network (DBN) model of dialogue that
represents the relationships between interlocutors’
mental states, evolving dialogue context, discourse
moves and observable evidence produced by inter-
locutors over time.

Buschmeier and Kopp (2018), too, use a DBN
to represent the dependency of the probabilistic
grounding state on the so-called attributed listener
state (ALS) over time. The ALS consists of sev-
eral variables based on communicative functions

of linguistic feedback (Allwood et al., 1992; Kopp
et al., 2008), namely contact, perception, under-
standing, acceptance and agreement which are in-
ferred within the DBN based on incoming multi-
modal data and interaction context.

Axelsson and Skantze’s (2023) adaptive presen-
ter agent stores grounding as labels of properties
in the domain knowledge graph, and these labels
are updated based on the user feedback category
obtained from a random forest classifier (positive,
negative or neutral feedback). SNAPE (Robrecht
and Kopp, 2023) similarly represents the grounding
state via level of understanding (a concept can be
either grounded or not) regarding relationships in a
knowledge-graph-based domain model. Di Maro
et al. (2021) focus on detecting conflicts during
interaction leading to inconsistent state of common
ground. They conceptualise their common ground
representation in terms of personal common ground
consisting of dialogue history, and communal com-
mon ground consisting of domain knowledge that
is shared between the agent and the user. On the
technical level, their common ground representa-
tion is implemented as a graph database. A similar
approach is also pursued in this work.

2.3 Analogical problem-solving

The general principle of analogical reasoning lies in
the concept of mapping, wherein correspondences
are found between the source (also called base,
i.e., known body of information) and the target
(problem to be solved) of the analogy (Gick and
Holyoak, 1983). Gentner (1983) defines the so-
called structure-mapping theory describing inter-
pretation rules for analogies. This theory postulates
that an analogy is characterised by the mapping of
structural relations between entities within base
and target, rather than the surface-level similarity
of their features, and that this mapping is governed
by the principle of systematicity, i.e., the existence
of related higher-order relations. The key concepts
of the structure-mapping theory are supported by
empirical evidence (Gentner and Maravilla, 2017).

As mentioned before, analogical reasoning is
closely related to the process of schema induction,
during which a generalised schema is extracted
from specific examples. Gick and Holyoak (1983)
found that, when given two analogy sources, the
participants were able to derive the generalised
problem schema as a byproduct of comparison of
the sources, and that the quality of the generated



schema was a positive predictor for the transfer
of the analogy to the target. Similar results were
obtained by Gentner et al. (2003) who additionally
showed that increasing the degree of guidance dur-
ing analogy training increased the rate of transfer
during the exercise. These findings suggest that
an adaptive explainer/tutoring agent may have a
positive effect on the success of analogical transfer
in problem-solving.

To be able to interpret this work in the bigger
context of research on analogical reasoning, a set
of frequently used problems from the experiments
by Gick and Holyoak (1983) was chosen as the
use case for the agent. The explainee is required to
solve the Radiation problem first posed by Duncker
(1945) with the help of various analogs from dif-
ferent domains. In the Radiation problem the user
is asked to imagine they are a doctor and have to
find appropriate treatment for a patient with an in-
operable tumor. The tumor can be destroyed with
high-intensity radiation, but such procedure would
also destroy the healthy tissue the radiation would
pass through on the way to the tumor. While there
are several possible solutions to the Radiation prob-
lem, the desired one is the so-called convergence
solution where multiple weaker forces converge on
the target, such as several low-intensity radiation
rays from different directions that will not damage
the healthy tissue, but combined will destroy the
tumor. Further information on the use case will be
provided in section 4.

3 Agent architecture

The core components of the architecture facilitating
predictive grounding state inference are depicted
in figure 1:

1. the dialogue manager based on the flexdiam
architecture described in Yaghoubzadeh and
Kopp (2017), extended for grounding state
prediction and explanation generation, and

2. the memory component in form of a graph
database that stores multiple types of infor-
mation, such as domain model, conversa-
tional record (i.e., interaction-related infor-
mation that was made public to interlocutors)
(Thomason, 2003) and dialogue information
state (DIS) incorporating the agent’s predic-
tion about current grounding state of domain
entities (Buschmeier and Kopp, 2012).

In this section, these will be described in more de-
tail. Additionally, a subsection will be devoted to
the natural language understanding (NLU) compo-
nent of the architecture to discuss an example use
of state-of-the-art large language models (LLMs)
in adaptive dialogue interaction.

3.1 Memory component

The memory component stores all information that
is available to the agent at runtime in the form of a
graph defining relationships between various types
of entities (figure 2). Currently, these include the
following.

• DE nodes: structured representation of do-
main knowledge is important for the applica-
tion of the structure-mapping theory in order
to determine the best analogy for the target
among the sources. This representation in-
cludes abstractions of relations and actions in
the form of generalised schemata, as well as
instances of these schemata in source and tar-
get examples. The model can support a higher
granularity of domain knowledge representa-
tion if necessary. DE nodes are initialised at
the start of the interaction and do not change
throughout.

• DIS nodes for domain entities: DE nodes for
schemata and schema instances have corre-
sponding DIS nodes that store the parameters
of the probability distribution describing the
current belief of the agent about the ground-
ing state G of an entity. These parameters
are initialised when the entity first becomes
significant, for instance, by being introduced
by the system, and updated whenever relevant
evidence of understanding is provided by the
user.

• Conversational record nodes: these store infor-
mation about employed dialogue moves and
user feedback concerning a specific DIS node.
New nodes in this category are continuously
created throughout the interaction, but once
added to the graph, they remain unchanged.

The memory component is implemented using the
graph database framework Neo4j1.

1https://neo4j.com/

https://neo4j.com/
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Figure 1: The architecture of the explainer agent.

3.2 Dialogue manager
As can be seen in figure 1, dialogue management
essentially consists of two subsystems: grounding
state inference and explanation planning. The dia-
logue manager is implemented in Python using the
architecture called flexdiam (Yaghoubzadeh and
Kopp, 2017) that was developed for spoken inter-
action in assistive settings utilising approaches tai-
lored to dialogues with high degrees of uncertainty,
which is also beneficial for a tutoring scenario.

Predictive grounding state inference
As previously mentioned, the belief of the agent
about the grounding state G of a DE is described by
a probability distribution. The parameters of this
distribution are initialised when the entity becomes
relevant for the first time during the explanation
process. This initial distribution constitutes a uni-
form prior over the grounding state belief P (G).
When evidence of understanding U relevant to the
entity is observed by the agent, it is used to calcu-
late the posterior distribution P (G|U) based on the
Bayes’ theorem:

P (G|U) ∝ P (G)× P (U |G) (1)

Once the posterior is computed, it becomes the
new prior distribution for the grounding state belief.
In order to make the calculation of the posterior
tractable at interaction time, the system uses conju-
gate priors for corresponding evidence likelihoods

(Lambert, 2018). As the model for grounding state
inference is hierarchical, two pairs of likelihoods
and conjugate priors are used in the system, de-
pending on the type of DE they are assigned to.

The lower level of the inference model deals
with beliefs about the grounding state of schema
instances. A belief about the grounding state of
a schema instance is thus described by the beta
distribution with probability density function (PDF)
defined as

f(g;α, β) =
gα−1(1− g)β−1

B(α, β)
(2)

where g ∈ [0; 1] is the realisation of the random
variable G representing the grounding state of a DE,
α, β > 0 are the shape parameters of the distribu-
tion, and B(α, β) = Γ(α)Γ(β)

Γ(α+β) is the beta function
acting as the normalisation constant (where Γ is
the gamma function defined for positive integers as
Γ(y) = (y − 1)!).

When the explainee reacts with positive or nega-
tive feedback to the agent’s utterance, this feedback
is interpreted by the system as evidence of under-
standing or non-understanding, respectively. This
binary outcome is modelled using Bernoulli likeli-
hood to which the beta distribution is the conjugate
prior. Thus, the posterior is also a beta distribution
with updated parameters

α′ = α+
n∑

i=1

ui and β′ = β+n−
n∑

i=1

ui (3)
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Figure 2: Part of the graph associated with the schema
"strategic division" ("Strategische Aufteilung", big light
green node). Following relationships and node types
are represented here: :GROUNDED_IN as relationship be-
tween a DE and a DIS node, :INSTANCED_IN as relation-
ship between schema and its instances, :SPEAKS_ABOUT
as relationship between example and its schema in-
stances, :RELATED_ACTS as relationship between a DIS
and a conversational record node.

where u ∈ {0; 1} is the evidence of non-
understanding (u = 0) or understanding (u = 1).
As maximum of one instance of evidence per DE
can be observed each turn, n = 1.

The higher level of the inference model deals
with beliefs about the grounding state of gener-
alised schemata. A new posterior for grounding
state belief distribution of a schema is calculated
if the distribution parameters of at least one of its
instances were updated. The general update rule de-
fined by the Bayes’ theorem (equation 1) is applied
here as follows. The mean value µ of the newly
calculated posterior distribution P (G|U) for the
related schema instance is assigned to categories
"low", "medium" and "high". These categories are
defined in an overlapping fashion to express uncer-
tainty within the model, for instance, µ that equals
0.45 is categorised as both "low" and "medium".
The evidence of understanding is then defined by
a categorical variable u = (ulow, umedium, uhigh)
where u is the number of occurrences of each cat-
egory. So, for µ equals 0.45, the evidence of un-
derstanding used on the higher level of inference is
u = (1, 1, 0).

The conjugate prior to the categorical likelihood

is the Dirichlet distribution with PDF defined as

f(g1, ..., gK ;α1, ..., αK) =
1

B(α)

K∏
i=1

gαi−1
i (4)

where gi ∈ [0; 1] for all i ∈ {1;K} and∑K
i=1 gi = 1 is the realisation of the random vari-

able G representing the grounding state of a DE,
α > 0 is the vector of concentration parameters

of the distribution and B(α) =
∏K

i=1 Γ(αi)

Γ(
∑K

i=1 αi)
is the

multinomial beta function where the gamma func-
tion is expressed for positive integers in the same
way as above. In the inference model, K = 3 for
the categories "low", "medium" and "high".

Considering the definitions above, the parameter
update rule for the Dirichlet distribution is

α′ = α+ u (5)

A special case of feedback regarding a schema
instance can occur if the agent poses an open ques-
tion to the user in order to encourage them to apply
a schema with a high grounding state belief to a
new example by themselves, similarly to Cawsey
(1993). This is a way to obtain high-quality ev-
idence of understanding. If the user manages to
successfully generate the schema instance, the up-
date rules for the lower level of the inference model
defined in equations 3 are superseded in order to
distinguish such maximising feedback from regular
positive feedback such as responding with "yes" to
an agent’s utterance. In this case, the parameters
of the distribution are directly adjusted so that the
mean of the distribution lies exclusively within the
"high" category. A special label is added to the cor-
responding DIS node in the memory graph as well,
denoting that its DE was generated by the user. The
update of the higher level of the inference model
then proceeds normally with u = (−1,−1, 1) to
increase the impact of the evidence of understand-
ing resulting from a user-generated utterance.

Explanation planning
The planning of explanations in the architecture is
also hierarchical. On the higher level of abstraction,
the agent can implement different general strategies
that define the principles for explanation content
and dialogue move selection, while on the lower
level of abstraction, it selects new content and di-
alogue moves for every explanation turn based on
predictions of the grounding state of DEs and rules
defined by the high-level strategies. High-level



planning can thus be seen as an instance of the cog-
nitive process of explanation generation as defined
by Dazeley et al. (2021), while low-level planning
belongs more to the social process of explanation
generation, and was therefore the primary focus of
research so far.

Currently, high-level explanation planning is
kept constant by predefined rules. For instance, the
agent always starts with examples that are most sim-
ilar to the target in terms of the structure-mapping
theory. In future research, however, it can be at-
tempted to formalise high-level strategies as adapt-
able pathways, building up on the definition of
El-Assady et al. (2019), and explore the impact of
this level of adaptation in empirical studies.

Concerning low-level planning, first, the main
content of the next explanation turn is determined
according to principles predefined by the high-level
strategy. When the agent needs a new example, it
is selected based on its structural similarity to the
target. It is calculated using the Jaccard similarity
coefficient:

J(S, T ) =
|S ∩ T |
|S ∪ T |

(6)

where S and T are sets of analogy-relevant rela-
tionships within the source and target example, re-
spectively. For instance, all relationships of the
type :SPEAKS_ABOUT (figure 2).

Schema instances within an example are selected
based on the high-level strategy. The memory com-
ponent is hereby queried for corresponding ground-
ing state predictions to inform the system’s dia-
logue move selection via predictive inference.

Consider the general update principle of the
grounding state belief of a DE in equation 1. This
equation can be used to estimate the posterior distri-
bution P (Gm|Um) given the most likely evidence
of understanding u∗m the agent would receive af-
ter a dialogue move m. The dialogue move result-
ing in the highest posterior distribution is selected
by the explanation planner. The system currently
supports two dialogue moves relating to introduc-
tion of new schema instances: "elicit generation"
and "present alignment". Section 4 shows how the
system chooses between these alternatives using
predictive grounding state.

Determining u∗m is not trivial and ideally re-
quires a model of explainee’s feedback generation.
Right now, this value is defined by a set of rules
for each available dialogue move. It is decided
based on the category with the highest expected

value in the grounding state belief distribution of
the schema corresponding to the instance selected
for the explanation turn. However, data of interac-
tions with real users that will be collected in future
empirical studies could be used to construct a gen-
erative model of evidence of understanding that
can be used to estimate u∗m.

3.3 Natural language understanding

Previously, the flexdiam dialogue management
architecture used the Rasa NLU2 framework for
intent and entity recognition. The language model
employed there is based on word vectors that
worked well for use cases with more structured
user input where entity recognition was used pri-
marily for slot-filling. However, in order to allow
the users to answer open questions freely and use
diverse expressions to refer to complex concepts
and schemata, a different type of NLU component
was required. This component should be capable
of reformulating and summarising user utterances
to obtain DEs that can be easily matched to the
definitions in the agent’s domain model. This kind
of task is highly suitable for a pre-trained large lan-
guage model (Yang et al., 2023), especially in the
absence of high-quality training data.

These requirements led to a hybrid approach
for NLU where intent recognition is still done
with the Rasa NLU framework for a higher de-
gree of control, while entity recognition is done
with a pre-trained large language model based on
the transformer architecture (Vaswani et al., 2017),
namely, text-davinci-003 from the GPT 3.5
family. Once the intent has been recognised by
Rasa NLU, a prompt corresponding to the required
entity recognition task is constructed. Currently,
the pre-trained model is used "as-is", taking advan-
tage of the LLMs’ capabilities for few-shot learn-
ing from a small amount of handcrafted examples
(Brown et al., 2020). However, the authors are
preparing to evaluate the use of a smaller open-
source model instead of text-davinci-003 and
are currently creating a data set for model fine-
tuning.

While using an LLM can lead to unpredictable
output such as hallucinations (i.e., undesirable
text generation) (Ji et al., 2023), these risks were
deemed acceptable, as the adaptive nature of the
agent is expected to mitigate potential downstream
errors caused by undesired language model out-

2https://rasa.com/docs/rasa/nlu-only

https://rasa.com/docs/rasa/nlu-only


put through interaction, serving a function similar
to repair of miscommunication in human-human
interaction (Albert and de Ruiter, 2018).

4 Worked examples

This section offers more details about the use case
for the agent, as well as some dialogue excerpts
showcasing its behaviour in response to different
types of user feedback. These are real conversa-
tions a user can have with the agent as it is imple-
mented at the moment. Natural language gener-
ation is currently done with templates that were
pre-generated using the text-davinci-003 lan-
guage model and manually edited. The possibility
of using an LLM for online natural language gen-
eration is currently being evaluated. The agent
converses with the user in German, however, for
illustration purposes, the dialogues were translated
into English by the author of the paper.

As mentioned in section 2.3, the use case cho-
sen for the agent is based on experiments by Gick
and Holyoak (1983). The user is required to find
the convergence solution to the Radiation problem.
The desired solution can be learned from analo-
gous examples from other domains adapted from
Gick and Holyoak (1983, Appendix II). These ex-
amples include various stories such as Fall of the
Dictatorship (originally The General), in which the
attacking army needed to be divided into smaller
groups that converged on the fortress for a coordi-
nated attack in order to avoid triggering the mines
on the roads to the fortress.

Example interactions in the following dialogue
boxes illustrate the adaptivity of the agent regard-
ing presentation of instances of a known schema
in previously unseen stories. The evidence of un-
derstanding for the schema instance in the story
under discussion is used to update the probability
distributions for the grounding state of the instance,
as well as that of the underlying schema. These
new probabilities are later used by the system to
adapt dialogue moves happening potentially sev-
eral turns after the evidence was provided by the
user. In the example dialogues, the adaptation hap-
pens in the last turn of the agent when a new story
containing a known schema is introduced to the
user. For reasons of simplicity, the exchanges in
the dialogue boxes happen in the system where the
prior probability distributions for grounding state
have just been initialised and were not changed by
previous turns. For update rules and descriptions

of nodes from the memory graph, see sections 3.2
and 3.1, respectively.

Without user-generated schema instance

AGENT: Can you name an important point
from the story "Fall of the Dictatorship"
that describes the problem in the story or
its solution?

USER: No.

[(1) Update P (G|U) for all DIS nodes for
schemata instances in "Fall of the Dictatorship"
with u = 0, leading to µ′ in category "low"
(2) Update P (G|U) for all DIS nodes for
schemata in "Fall of the Dictatorship" with u =

(1, 0, 0)]

AGENT: No problem, I will explain the im-
portant points of the story to you in a
moment!

AGENT: One important aspect of the story
"Fall of the Dictatorship" was that the
big army of the general had to be divided
in smaller groups, so that the mines on
the road don’t get triggered. Thus we see
that the principle of "strategic division"
was important here for the successful res-
olution of the problem.

USER: Okay.

[(1) Update P (G|U) for the DIS node for
schema instance with schema name "strategic
division" and story name "Fall of the Dictator-
ship" with u = 1 leading to µ′ in categories
"low" and "medium"
(2) UpdateP (G|U) for the DIS node for schema
called "strategic division" with u = (1, 1, 0)]

[(1) After several unrelated turns, when the next
example containing "strategic division" gets pre-
sented, the DIS node for this schema has the
highest expected value for P (G|U) in category
"low"
(2) Apply rules to determine u∗m for category
"low": when m is "elicit generation", u∗m is
expected to be negative, predicting "low" pos-
terior; when m is "present alignment" u∗m is
expected to be positive, predicting "medium"
posterior]

AGENT: A relevant feature of the story "Tank
Assault" was that the available tanks
were divided and positioned on different
bridges, so that they could cross these
narrow bridges. It means that the princi-
ple of "strategic division" is important
here. Similarly, in the story "Fall of
the Dictatorship" the troops were divided
into smaller groups, so that mines on the
road don’t get triggered.

When a story is introduced to the explainee, they
are asked whether they can identify any "important
points", i.e., schemata present in it. In response, the
explainee can describe any concepts that in their
opinion contributed to the solution of the problem
in the story. The system then evaluates whether



valid schemata instances were named and/or de-
scribed and updates the probability distributions of
related DEs. This results in different states of the
system and different behaviour later on.

In the first example, the user does not identify
any schemata. Using this negative feedback and the
grounding state update rules presented previously,
new posterior distributions P (G|U) are calculated
for the grounding state of all schemata present in
the story under discussion. The system is then
required to introduce a schema (e.g., strategic di-
vision) to the user by describing its instance in the
current story. The user can give feedback to signal
their level of understanding. "Okay" is interpreted
as positive feedback by the system. This leads to
updates of grounding state distributions on relevant
memory graph nodes. Later in the dialogue, when
a new story containing the schema strategic divi-
sion is presented to the user, the system chooses the
appropriate dialogue move by predicting the most
likely evidence of understanding u∗m for each of
the available dialogue moves m considering the ex-
pected grounding state category of the schema and
the uniform prior over the grounding state corre-
sponding to the unseen schema instance. Here, the
expected grounding state category is "low" based
on previous interactions, so the system chooses the
dialogue move present alignment, i.e., to explicitly
tell the user about the instance of strategic division
in the new story and compare it with the instance
of this schema from the previous story.

In the second example, the user correctly iden-
tifies the schema strategic division in the current
story, which is recognised by the system using the
approach described in section 3.3. In this case,
the grounding state distributions related to the gen-
erated schema and its instance in the story under
discussion are updated using previously defined
special rules for high-quality evidence of under-
standing. Later on, when a new story containing the
schema strategic division is introduced, the system,
as described above, chooses the appropriate dia-
logue move by predicting u∗m. Now, however, the
expected category of the schema grounding state is
"high", and so the system predicts that the dialogue
move elicit generation will result in successful gen-
eration of the schema instance in the new story by
the user, giving the system the best possible evi-
dence of understanding. Given the uniform prior
over the grounding state of the new schema in-
stance, this would result in the best expected value

of the posterior distribution, therefore, the move
elicit generation is chosen.

With user-generated schema instance

AGENT: Can you name an important point
from the story "Fall of the Dictatorship"
that describes the problem in the story or
its solution?

USER: Yes, it was an important point in the
story that the army was divided into
smaller groups so that the mines on the
road don’t get blown up.

[(1) Recognise that user is speaking about the
schema called "strategic division"
(2) UpdateP (G|U) for the DIS node for schema
instance with schema name "strategic division"
and story name "Fall of the Dictatorship", so that
µ′ is in category "high"
(3) Update P (G|U) for the DIS node for
schema called "strategic division" with u =

(−1,−1, 1)]

AGENT: You have correctly identified one of
the important principles of this story. It
is called "strategic division". Now I
will help you identify other concepts that
played an important role in the solution.

[(1) After several unrelated turns, when the next
example containing "strategic division" gets pre-
sented, the DIS node for this schema has the
highest expected value for P (G|U) category
"high"
(2) Apply rules to determine u∗m for category
"high": when m is "elicit generation", u∗m is
expected to be maximising, predicting "high"
posterior; when m is "present alignment" u∗m

is expected to be positive, predicting "medium"
posterior]

AGENT: Can you recognise the concept of
"strategic division" in the story "Tank
Assault"? If so, then please tell me how
it is expressed here.

5 Conclusion and future work

This paper presents a hierarchical grounding state
prediction model that allows an explainer agent to
adapt dialogue moves regarding previously unmen-
tioned domain elements.

This is necessary in scenarios such as instruc-
tions in analogical problem-solving, as through the
principle of schema induction users can learn gen-
eralised schemata and apply them to new domains
autonomously. Following the principle of scaffold-
ing (Rohlfing et al., 2021), the agent has to be able
to predict the grounding state of relevant domain
entities in order to build up on the available knowl-
edge in the explanation process and make it more
engaging and cooperative. While these are the ex-
pectations placed on the agent, the system can only



be comprehensively evaluated in a series of empiri-
cal studies. Preparing for these is the next step in
the project. Interaction data with real users needs
to be collected in order to construct a generative
model for evidence of understanding to move away
from the rule-based approach currently employed
for posterior prediction of grounding state after a
specific dialogue move. Additionally, it would be
interesting to expand the research on high-level
strategies for explanation planning and investigate
whether and how those could/should be adapted.

Limitations

Inference of common ground in humans incorpo-
rates complex cognitive processes the exact com-
bination of which is not fully understood. A com-
putational model dealing with these processes nat-
urally features a lot of limitations. A system that
strives to be co-constructive in conversations with
humans also needs to be efficient and interpretable.
For reasons of efficiency, the proposed grounding
state prediction model uses conjugate priors for
Bayesian inference. However, conjugate priors of-
ten do not capture the full complexity of real-life
data and events. Only results of an empirical study
can show whether they are sufficiently good for the
intended application.

Another limitation relates to the interpretation
of feedback. While feedback fulfils a variety of
communicative functions in interaction, such as sig-
nalling contact or perception (Allwood et al., 1992),
the proposed agent interprets it as evidence of un-
derstanding. However, the system should react
differently to a user signalling negative perception
than to a user signalling negative understanding.

Additionally, the interpretability requirement
makes the use of "black box" machine learning
models inside the system problematic. Tools such
as LLMs are powerful and can allow the system
to engage in more complex dialogues, where tasks
such as text summarisation and paraphrasing are
required on behalf of the system. However, the
risk posed by hallucinations of the language model
cannot be eliminated completely. Even though the
adaptive nature of the developed agent should miti-
gate it, potential downstream errors might still have
a negative effect on understanding, overall success
in the problem-solving task or acceptance of the
agent. Despite this, multiple applications of LLMs
should be considered in more detail, for example,
automatic generation of domain knowledge rep-

resentations, including abstractions of generalised
schemata and analogous concepts from text descrip-
tions of problems, as well as generation of training
data for classic NLU approaches.
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