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Abstract
An important yet underexplored aspect of
meaning in both distributional and grounded
models of semantics is emotion. In this paper,
we explore how emotion can be predicted from
descriptions of robot behaviors represented
with embeddings. We then compare this ap-
proach with a grounded model that maps cor-
responding robot behaviors represented as in-
ternal states to the same emotion labels and
discover comparable results. We then take the
predictions from the second model and use
them as a proxy for concrete affect (as opposed
to abstract emotion) and use this derived affect
to ground a semantic classifier in a retrieval
task and see improvements on the retrieval task
when affect is used as a grounded modality.
This demonstrates that semantics can benefit
from using a proxy of affect derived from hu-
man perceptions, given those perceptions are
mapped to clear proxies, such the behaviors of
an embodied robot.

1 Introduction

Semantic representation is a crucial part of lan-
guage understanding for spoken dialogue sys-
tems, and the semantic meanings of many words
have emotion as part of their connotative mean-
ing (Lane and Nadel, 2002). Yet, including emo-
tion in semantic models is complicated by the di-
vide between distributional and grounded seman-
tic representations, which rely upon separate as-
sumptions for the source of meaning: distribu-
tional models only consider abstract meaning and
grounded models only consider concrete meaning.
Indeed, Bender and Koller (2020) and Bisk et al.
(2020) observed that models of distributional se-
mantics (i.e., embeddings) operate only on text
and are missing key aspects of meaning. We there-
fore infer that distributional approaches make an
abstractness assumption because the mode of ac-
quisition for abstract language is other linguis-

tic information (Della Rosa et al., 2010). Con-
versely, grounded semantic models make a con-
creteness assumption in that all semantic informa-
tion can be acquired concretely by physical world
denotations. Following Barrett (2017), emotions
can similarly be dichotomized as abstract and con-
crete; abstract according their lexical categories
(e.g., happiness, fear, anger) distributed with text,
and concretely through affect which is a biolog-
ical system and a fundamental part of embodi-
ment (Vigliocco et al., 2014). In contrast to ab-
stract emotion concepts, affect is a more basic un-
derpinning for emotion, ranging from unpleasant
to pleasant (valence) and from agitated to calm
(arousal).

In this paper, we explore how emotion can be
approached abstractly from embeddings derived
from written descriptions describing a robot’s be-
havior, and how affect can be approached con-
cretely by deriving affect from the physical in-
ternal state data of a robot. We tie this to a se-
mantic model by addressing the question of how
a grounded semantic model could use a represen-
tation of affect and how this compares to existing
work that links emotions to abstract semantic rep-
resentations (like embeddings). In Experiment 1,
we model abstract emotions from descriptions of
robot behaviors in accordance with the abstract-
ness assumption. In Experiment 2, we model con-
crete emotions from the robot’s internal state data
in accordance with the concreteness assumption.
We hypothesize that both text descriptions and in-
ternal robot states can be used to classify emo-
tion labels and conclude that these approaches are
comparable. In Experiment 3, we take the model
from Experiment 2 and use the distribution over
emotion labels derived from internal robot states
as a feature vector of affect for a grounded se-
mantic model. The results show that the semantic
model can ground into our representation of affect.



Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

2 Related Work

Our work relates to other recent work in con-
necting abstract emotions with embeddings. Xu
et al. (2018) introduced Emo2Vec, a model of rep-
resenting emotion as an embedding using multi-
task learning. Agrawal et al. (2018) enriched
word representations with emotional information,
taking into account the fact that emotion words
are distributed in similar ways in text, but have
vastly different underlying emotional affect (e.g.,
sad is distributionally similar to happy). Simi-
larly, Saravia et al. (2018) introduced CARER,
a semi-supervised approach for representing lex-
ically contextualized affect, enriched with embed-
dings. Finally, Alhuzali et al. (2018) extracted
emotional information in text using Arabic dialec-
tic first-person seed words. Ongoing work in emo-
tion representation continues to follow the distri-
bution hypothesis (i.e., assuming the semantics of
all words are abstract), comparable to our findings
in Experiment 1, but we move beyond this work
by exploring how words can ground into an extra-
linguistic affective representation.

Also related to our work is research on ground-
ing semantic meaning of words into perceptual
modalities beyond vision, such as auditory (Kiela
and Clark, 2015) and olfactory perception (Grab-
ski et al., 2012), haptics (Alomari et al., 2017;
Thomason et al., 2016), and simulated hand mus-
cle activations (Moro and Kennington, 2018).
More directly related to our work is Song and
Yamada (2018), which reported a multimodal ap-
proach in predicting a human’s label of robot af-
fect from seven basic emotions, as well as overall
valence and arousal. Our work adds to a growing
literature around a notion of embodied semantics
(Johnson, 2008; Goertzel et al., 2010)–our exper-
iments show that abstract words can ground more
readily into representations of affect and emotion.

Our work builds directly off of McNeill and
Kennington (2019), which explored how humans
interpret affective display of robot behaviors, and
Novikova et al. (2015) which explored how dy-
namic behaviors can be represented for mapping
to emotions. We extend their work by linking dy-
namic robot modalities to emotion labels, and also
to text descriptions of those robot behaviors.

3 Models

To model language abstractly for Experiment 1,
we use the BERT model introduced in Devlin et al.

Figure 1: Two example frames of a recorded behavior.

(2018), which has been leveraged in many lan-
guage tasks, in many cases resulting in state-of-
the-art performance.

To model grounded semantics for Experiment
3, we use the words-as-classifier (WAC) model
for grounded lexical semantics (Kennington and
Schlangen, 2015) due to its simplicity and in-
terpretability. The WAC model uses a task-
independent approach to predicting the semantic
appropriateness of a word given a physical con-
text. It pairs each word w in its vocabulary V with
a classifier, and this classifier maps the real-valued
features x of an experience exp (e.g., information
recorded by a robot’s sensors) to a semantic appro-
priateness score (i.e., if the information belongs to
the class given by a word):

[[w]]exp = λx.pw(x) (1)

For example, to learn the grounded meaning of
the word turn, the low-level features (e.g., wheel
motor speed) of a robot behavior described by the
word turn are given as positive instances to a su-
pervised learning classifier. Negative instances are
randomly sampled from the complementary set of
descriptions (i.e., behaviors not described by the
word turn). This results in a trained λx.pturn(x),
where x is the feature-set of a behavior that can be
described by turn.

4 Data

For all of our experiments, we use data introduced
in McNeill and Kennington (2019) that used the
Anki Cozmo robot (see Figure 1).1 Cozmo was
marketed as a toy robot for children, is small in
size, and the SDK allows developers to access
low-level information about the robot state and to
control several degrees of freedom including ani-
mated eyes, a head and lift that can move up and
down, wheels that can be used to turn and move

1https://github.com/bsu-slim/
cozmo-affect-data

https://github.com/bsu-slim/cozmo-affect-data
https://github.com/bsu-slim/cozmo-affect-data
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the robot forward or backward, and a speech syn-
thesizer. Cozmo has a built-in camera and simple
built-in object and facial detection software. Fol-
lowing McNeill and Kennington (2019), we use
the data they collected by asking Amazon Me-
chanical Turk workers to observe and write En-
glish descriptions and label of Cozmo’s 941 pre-
scripted behaviors for emotion. These behaviors
include movements, sounds, and facial animations
that are easily observable by a person.

Their data collection resulted in 1,870 descrip-
tions and 16 emotion labels (interest, alarm, con-
fusion, understanding, frustration, relief, sorrow,
joy, anger, gratitude, fear, hope, boredom, sur-
prise, disgust, desire), at least two for each of
the behaviors (their work focused on the emotion
labels; we use both the workers’ emotion labels
and their written descriptions). We normalized
the descriptions by lower-casing all text, replacing
punctuation with spaces, and removing any non-
alphanumeric characters, resulting in a vocabulary
size of 1230 words. The average phrase length
was 7.9 words. The most common reported emo-
tion label was interest (22% of phrases). The
original dataset has three modalities: audio, facial,
and internal states which represent Cozmo’s ani-
mation modalities for each behavior. In this paper,
we focus only on internal states (due to the fea-
ture transform we apply below). Each state update
recorded a vector of 47 continuous feature values.
The number of state updates varied for each be-
havior; i.e., a behavior could have as few as one
state update vector, or as many as over a thousand
state update vectors.

We augment their dataset with features ex-
plained in Novikova et al. (2015) (see Table 1 in
that paper) which we term Novikova features, that
we use in Experiments 2 & 3. These features are a
functional transformation from the internal states,
(which could range from a few state updates to as
many as two thousand state updates for a particu-
lar behavior) to a set of 9 features:2

• Approach 1 - Transfer weight forward (head bent or
movement forward)

• Approach 3 - Move its body forward (track wheel
movement forward)

• Approach 5 - Extend or expand its body (lift movement
up)

• Avoidance 6 - Transfer weight backward (head bent or
movement backward)

2We excluded the other 14 features because they did not
change the results for a subset of Experiment 2; i.e., for our
data, they were interpolations of the 9 remaining features.

• Avoidance 8 - Move its body backward (track wheel
movement backward)

• Avoidance 9 - Attract limbs close to body (lift move-
ment down)

• Energy 11 - High strength (high wheel speed)
• Energy 12 - Low strength (low wheel speed)
• Flow 18 - High change in tempo (change in motor

speed)

Each feature yields a value that is a percent-
age of the time that feature is true. For exam-
ple, Approach 1 is the percentage of robot state
changes with forward movement and Avoidance
9 is the percentage of the state updates where the
lift was in the lower half. Taken together, these
transformations result in a vector of 9 values, each
value between 1 and 0. Using these features has
the added benefit of being generalizable to other
robots; one only needs to map internal state repre-
sentations of their chosen robotic platform to the
Novikova features for modeling emotion.

Example Figure 1 shows two frames of a
recorded behavior corresponding to Example (1)
below, which includes (a) one worker’s typed de-
scription of the behavior, (b) that worker’s chosen
affects to label the behavior, (c) a table with a sam-
ple of 4 internal features at one state update, and
(d) Novikova features.

(1) a. The robot comes closer to the camera, showing
a desire to know what is going on. Then it
slams down its arms, like it wants to know.

b. sad, frustrated, curious

c.

feature value
left wheel speed 0.0
right wheel speed 0.0
lift height 4.0
head position 3.0
...

d. [0.11, 0.27, 0.97, 0.8, ..., 0.34]

Analysis of Novikova Features Figure 2 shows
an application of TSNE to our data, which are
represented as the Novikova features, annotated
by color for each emotion. There are some clear
clusters for some of the emotions, such as frustra-
tion, surprise, alarm, boredom, interest, and sor-
row, indicating that many of the robot behaviors
are cleanly separated, but there are many instances
where a behavior does not belong to a particular
cluster, indicating noise from human judgements
of emotion of robot behaviors can be subjective,
but potentially useful if a classifier can pick up on
differences, which we explore in Experiment 2.
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Figure 2: TSNE applied to all robot behaviors rep-
resented by the Novikova features colored for each of
the 16 emotion labels. 0=interest, 1=alarm, 2=confu-
sion, 3=understanding, 4=frustration, 5=relief, 6=sor-
row, 7=joy, 8=anger, 9=gratitude, 10=fear, 11=hope,
12=boredom, 13=surprise, 14=disgust, 15=desire

5 Experiments

5.1 Experiment 1: Classifying Emotion
Labels from Descriptions

In this experiment, we explore how language maps
to abstract emotions; that is, by using the BERT
model we are making the abstractness assumption
on the descriptions, and we are assuming that emo-
tions are labels of abstract concepts. As has been
argued by Barrett (2017), emotions are indeed ab-
stract categorical labels that are derived from af-
fect and are tied into the abstract linguistic system.
By mapping embeddings to a distribution over 16
emotion labels, which themselves are a represen-
tation of the human judgment of emotion, we can
ascertain if emotion is a suitable modality that ab-
stract language can map to.

Task & Procedure For this experiment, we
evaluate a model that takes as input a written de-
scription of the robot behaviors, and outputs a dis-
tribution over the 16 emotion labels. The data was
split into training and testing groups using a ran-
dom 90:10 split.

Model and Training We used the BERT model
introduced by Devlin et al. (2018), as BERT has
been shown to improve over traditional recurrent
models. Instead of fine-tuning the pre-trained
BERT model, we use a feature-based approach
that has been shown to approximate fine-tuning,
where “fixed features are extracted from the pre-
trained model” (Devlin et al., 2018). The em-
beddings extracted from the pre-trained BERT
transformer encoder (pre-trained on BooksCor-

Accuracy Precision Recall F1 Score

90.4% 69.6% 31.4% 43.3%

Table 1: Results from Experiment 1 model when pre-
dicting 16 binary emotion labels on the testing set using
a threshold of 0.5.

pus (800M words) (Zhu et al., 2015) and English
Wikipedia (2,500M words)) are padded to a length
of 80, then fed into a two-layer feedforward neu-
ral network consisting of 128 nodes followed by
16 nodes (the small network is a result of our
small amount of data). We trained using a binary
crossentropy loss function and the adam optimizer,
for a period of over 800 epochs (hyperpareme-
ters were chosen empirically using a subset of the
training data).

Metrics We report accuracy, precision, recall,
and F1 score of the trained model, assigning a
probability above 0.5 to each label (i.e., more than
one label could be correct) using a micro averag-
ing strategy.

Results The results for this experiment are dis-
played in Table 1. These results show that our
model can effectively map a description of a robot
action to a distribution over emotion labels with
relatively little data. Analysis of a confusion ma-
trix shows that most of the errors are presented in
the form of false positives. This could be caused
by multiple users labeling the same robot action
with conflicting labels.

5.1.1 Analyses
Here we report further analyses to determine what
the model in this experiment is learning.

Synthetic Descriptions To explore whether the
model predicts what we would expect, Table 2
shows synthetic descriptions that we applied to
the model and observed the affect with the high-
est probability as assigned by the model.

Description Predicted Emotion
the robot looks down fear
the robot looks up interest
the robot moves away boredom
the robot moves closer interest
the robot shakes his head frustration
the robot nods his head understanding
the robot squeals gratitude
squinting eyes confusion

Table 2: Examples of predicting emotion labels from
descriptions of robot actions.
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Word-Emotion Associations Focusing on the
word-level, we analyze what our model is learn-
ing by determining which words correspond to
specific emotion labels (i.e., we applied single
words of our vocabulary to the model and ob-
served the resulting distribution over the emotion
labels). Table 3 shows several noteworthy exam-
ples of words with their corresponding top three
ranking emotion labels in the model’s resulting
distribution after applying that word. As expected,
sorrow’s most probable emotion label is sorrow
(as was also the case for understanding, confu-
sion and other emotion words), but other words
that aren’t directly related to emotion label also
showed strong predictions. The word eyes cor-
responds to confusion and alarm (i.e., eyes
furrow or widen, respectively) and when the robot
lowers its lift, it is interpreted as sorrow (i.e.,
disappointment) or desire (i.e., lowering the lift
keeps the lift out of the robot’s camera view so it
can better observe objects).

Word Top Emotion Labels
sorrow sorrow (0.62), relief (0.14)
eyes confusion (0.47), alarm (0.3)
like relief (0.49), understanding (0.48)
forward hope (0.85), understanding (0.74)
quickly alarm (0.83), understanding (0.56)
lowers sorrow (0.51), desire (0.32)

Table 3: Words and our model’s highest corresponding
predicted emotions.

Ablations We performed an ablation analysis on
our model where we modified the descriptions of
the robot that our model uses to train. We did this
by removing or retaining stop words, nouns, verbs,
adjectives, and adverbs. The part-of-speech tags
of the words in the descriptions were chosen using
TextBlob, and the model was trained as explained
in 5.1. We use the same metrics (i.e., accuracy,
precision, recall, f1 score) as Experiment 3.

The results are displayed in Table 4, demon-
strating that the base model and the version trained
with no stop words perform the best according to
all metrics, as expected. The version of the model
trained with only stop words performed second-
worst given the F1 score, as we expect that no rel-
evant emotional information is conveyed in stop
words. The version of the model trained on only
verbs had a slightly worse F1 score, indicating that
verbs may not carry meaningful information for a
model that is predicting perceived emotion. When
comparing F1 scores of the versions of the model

Acc Prec Recall F1
Base 90.4% 69.6% 31.4% 43.3%
No Stop Words 89.9% 63.9% 30.3% 41.1%
Only Stop Words 87.8% 38.2% 7.4% 12.4%
Removed Nouns 88.8% 56.1% 18.3% 27.6%
Only Nouns 87.6% 41.2% 16.0% 23.0%
Removed Verbs 89.5% 64.4% 21.7% 32.5%
Only Verbs 87.5% 31.4% 6.3% 10.5%
Removed Adj 90.2% 68.5% 28.6% 40.3%
Only Adjectives 89.2% 67.6% 14.3% 23.6%
Removed Adverbs 90.3% 68.8% 30.3% 42.1%
Only Adverbs 87.9% 18.2% 1.1% 2.2%

Table 4: Results from ablation study, where descrip-
tions of the robots’s behaviors were modified before
training.

trained on only nouns or only verbs, it is clear that
nouns are much more important to such a model
than verbs, and this is further demonstrated by the
high F1 score in the version of the model where
verbs were removed. This shows that the com-
posed descriptions represent complex language–
the composed description is a better predictor of
emotion.

Correlation with Sentiment We compared our
results with a sentiment classifier to determine
if simple sentiment classifiers capture nuances of
emotion in different types of written text. We
calculated sentiment scores with our model by
first predicting the 16 emotions split into posi-
tive/negative valence pairs (as done in (McNeill
and Kennington, 2019): interest/alarm, under-
standing/confusion, relief/frustration, joy/sorrow,
graditude/anger, hope/fear, surprise/boredom, de-
sire/disgust, then multiplied the probabilities of
the 8 negative emotion labels by -1, then averaged
the scores to obtain a sentiment score between -1
and 1, making our scores comparable to the senti-
ment scores given by the TextBlob sentiment clas-
sifier. We then calculated the correlation of deter-
mination between the sentiment scores from our
model and TextBlob. The R2 result was 0.11, in-
dicating a poor correlation. We believe that our
model learns robot-specific sentiment and context
that a general model does not account for. We
also note that the descriptions for this task rep-
resent an observer’s interpretation of a behavior,
whereas sentiment classification is tasked with the
emotional content within a written text; this shows
that applying sentiment classification may not help
in certain contexts. This point is further reinforced
by a high R2 value of 0.84 between the sentiment
scores calculated from the true values in the data
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and our model, and a R2 value of −0.51 between
the sentiment scores calculated from the data and
the sentiment scores from TextBlob.3

5.2 Experiment 2: Classifying Emotion
Labels from Robot Behaviors

In this experiment, we use the robot states rep-
resented as Novikova features to train and eval-
uate a classifier to predict what people perceive
about the emotional display of Cozmo’s behav-
iors. The purpose of this experiment is two-fold:
(1) to compare with the results of Experiment 1 to
ascertain if robot behaviors represented as inter-
nal state updates contain comparable information
to descriptions of those same behaviors (i.e., the
concreteness assumption compared against the ab-
stractness assumption), and (2) to build a model of
affect that a grounded semantic model can use to
ground into for Experiment 3.

Task & Procedure Given features that represent
a robot behavior (i.e., the Novikova features de-
scribed above) predict one or more of the 16 emo-
tion labels. We perform a 10-fold cross validation
and average the results of each fold. No individual
behavior was represented both in the training and
test set for each fold.

Model & Training Because our feature vectors
are small, and because we do not have much
training data, our approach uses a multi-label K-
Nearest Neighbor (KNN) classifier (Zhang and
Zhou, 2007) to map from features to a distribu-
tion over class labels (tests using other classifiers,
such as neural networks, resulted in worse perfor-
mance, likely due to the nature of the features and
small amount of training data).4 The only param-
eter that was needed for the KNN classifier was
number of neighbors, which we set to 5 to balance
generalizability and performance in our task.

Metrics To compare directly to prior work and
Experiment 1, we report two metrics to give an
overall understanding of how our model performs
this classification task in decreasing degrees of
constraint:
average accuracy: Because any given behavior
could have multiple labels, we take the predic-

3We opted to not compare with other fine-grained emo-
tion models like Abdul-Mageed and Ungar (2017) because
because the goal is to compare the model from Experiment 1
with the model from Experiment 3.

4Multi-label KNN uses Bayesian Inference to compute a
probability for each label.

tion distribution and for every affect that received
a probability of more than 0.5 in that distribution
(0.5 was determined using the development set),
we counted that as a positive guess for that af-
fect. We compared this to the labels (i.e., by com-
paring two binary vectors) and compute the accu-
racy for each behavior, then take the average. This
will seem inflated as many zeros in the binary vec-
tors will increase the accuracy, but it allows our
model to predict multiple labels, which better fol-
lows what people do when interpreting emotions
(i.e., this is the same as micro averaging, as done
in Experiment 1). F1 fscore: We compute the F1
score using micro averaging. We also report pre-
cision, recall, and F1 score for each individual af-
fect.

The baseline we are comparing against is the
best resulting setting and ablation reported in Mc-
Neill and Kennington (2019) (termed M&K be-
low). Note that their work used the raw features
from the robot including facial, audio, and inter-
nal state features. Their model was a multi-layer
perceptron.

5.3 Results

The results are shown in Table 5 and Figure 3. The
former shows a direct comparison to M&K; we
are reporting state-of-the-art results in both met-
rics despite only using internal state updates (their
work included facial and audio features, as pro-
duced by the robot) and our classifier is much
simpler. Moreover, the use of a KNN classifier
suggests that there are vectors (at least for the
Cozmo robot) which are prototypical for a partic-
ular affect, even if individual behaviors for each
affect appear to be very different. This is further
evidenced by the individual results in Figure 3,
which show high overall for each individual emo-
tion (with the exception of boredom). Comparing
the results to Experiment 1, we find that, given
a succinct representation like the Novikova fea-
tures, mapping from internal states to emotions
performs comparably to a mapping from words
(i.e., in the descriptions) to emotion. We are there-
fore able to capture an equivalent amount of in-
formation by applying either the concreteness as-
sumption or the abstractness assumption to this
task. Taken together, the model from this experi-
ment which maps from internal states (represented
as Novikova features) to a distribution over 16
emotions could potentially be used as a simulated
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Approach Assumption Feature Set Avg accuracy Avg f1
M&K Concrete raw internal states 71.0% 55.0%

Exp. 1 (BERT) Abstract text description 90.4% 43.3%
Exp. 2 (KNN) Concrete Novikova features 91.0% 57.0%

Table 5: We predict emotion labels using various feature sets derived from either the abstractness or concreteness
assumption. Results show that our KNN model using the Novikova features (exp 2) performs better than the
McNeill and Kennington (2019) prior work on the same task. Results of using the concreteness assumption in
Exp. 2 are comparable to the abstractness assumption using text description as the features set in Exp. 1.

Figure 3: Average precision, recall, and F1 score for
each emotion label for Experiment 2.

affective representation that a grounded classifier
could ground into, which we explore in Experi-
ment 3.

5.4 Experiment 3: Grounding Descriptions
into Robot Behaviors and Affective States

In this experiment, we seek to answer the ques-
tion: Can a model for grounded lexical seman-
tics ground into internal robot states as well as
a representation of affect derived from those in-
ternal states? We use the WAC model explained
above as the model of grounded lexical semantics,
the Novikova features as the robot state represen-
tation, and the trained model from Experiment 2
as a vector representation of affect (i.e., we treat it
was an emotional substrate to ground into).

Task & Procedure Given the words in a de-
scription, we randomly select n distractor behav-
iors from the test set and apply the features of
those distractors along with the gold behavior to
the classifiers for each word in the description us-
ing the WAC model. Following Schlangen et al.
(2016), the sum of the probabilities from these
classifiers results in the semantic appropriateness
score for each behavior. The model correctly iden-
tifies the gold behavior when that behavior is as-
signed the highest score.

We repeat this for 1-19 distractors d and re-
port the accuracy for each d using a 10-fold cross-

validation. Each behavior is represented twice in
the dataset (once for each description), but we en-
sure that the same behavior never occurs in both
train and test sets. We use words that are repre-
sented 5 or more times in the training data, result-
ing in a vocabulary of 347 words. Based on eval-
uations from one of the folds, we determined that
for each positive instance of a word in the corpus,
we should randomly choose 3 negative instances.

Model & Training Prior work using WAC has
traditionally used logistic regression classifiers
and multilayer perceptrons. Here, we take inspira-
tion from Experiment 2 and use KNN for the WAC

classifiers, as they are using the same set of fea-
tures as the KNN classifier in Experiment 2 used.
We trained an individual KNN for each word in
our vocabulary with the nearest neighbor parame-
ter set to 5 to balance generalizability and fitness.

A shortcoming of WAC is the independence as-
sumption which fails to capture more complex se-
mantic patterns within the text. However, the pur-
pose of this experiment is not to capture the var-
ious semantic dependencies within the text, but
to measure the comparative strength of our fea-
ture sets. WAC provides a simple and effective
means by which to compare constructed affect to
its lower-level source: robot state data.

We report results for when WAC only used the
Novikova features directly (i.e., grounding into in-
ternal robot states represented as the 9 Novikova
features), and also using the trained model from
Experiment 2 as a representation of affect (16 fea-
tures) for a total of 25 features.

Metrics The metric we report is accuracy of the
model in choosing the correct retrieved behav-
ior from the list of distractors, given the descrip-
tion. The baseline for this experiment are the
the other two ablations: when WAC model perfor-
mance without emotion labels, and the WAC model
that only uses emotion labels.
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Figure 4: Experiment 3 Results: WAC applied to
Novikova and affect feature types; accuracy for each
ablation compared to number of distractors.

Results The results are shown in Figure 4. Over-
all, the model performs with high accuracy when
there is only 1 distractor and we observe decreases
in accuracy as the number of distractors increases.
The WAC classifier performs well on its own given
the 9 Novikova features alone, but it performs no-
ticeably better when including our derived repre-
sentation of affect from Experiment 2 (particularly
when there are a larger number of distractors). Our
results show that a model of grounded semantics
can effectively ground into a predicted represen-
tation of affect. This is a very informative result:
automated systems clearly don’t have their own in-
trinsic biological / chemical affect, yet semantics
can benefit from using a proxy of affect derived
from human perceptions.

Analysis of Verbs In this section, we show how
WAC learns verb semantics from the Novikova
features by ranging over all possible values for
each feature (i.e., we passed the Novikova features
through a feature normalization transform, result-
ing in features ranging from -3.1 to 3.1), holding
all other features to 0 when they are not being
ranged over and using a WAC classifier to classify
each possible combination of features.

Figure 5 illustrates what the turns WAC model
learned by using a heatmap (darker colors denote
higher probabilities returned by WAC). We can
see from the figure that higher values in Avoid-
ance 8 (i.e., wheel movement) is the most informa-
tive feature, where most values that denote some
change in movement result in higher probabilities
for the turns WAC classifier. From this we learn
that a verb (used to denote a robot action, such
as turn) will have the expected feature representa-

Figure 5: Heat map generated by ranging over all pos-
sible features and applying them to the WAC classifier
for the verb turns; darker colors denote higher proba-
bilities.

tion using the Novikova features in a KNN clas-
sifier. We noticed similar expected results from
other verbs such as tilts (high sensitivity to Ap-
proach 3), plays (wide range of values for all fea-
tures between Approach 3 and Flow 18) and jerks
(high sensitivity to any feature relating to head and
light movement with high energy).

6 Conclusion

This work represents a contribution to a grow-
ing shift towards human-centered, affective com-
puting (Picard, 2000; Mohammad and Ovesdotter
Alm, 2015). People who use natural language are
also emotional beings; this has implications for the
kinds of systems researchers develop that humans
will interact with, as well as how the semantics of
words will be acquired, represented, and applied
in those systems; in particular, dialogue systems
that are used for spoken interaction with multi-
modal agents, such as robots. This work helps
shed light on how leveraging emotion and affect
leads to more accurate semantic models.

Our work agrees with the claims in Lücking
et al. (2019) which explains how distributional
representations are not enough. The partial mean-
ing of many words can be derived abstractly from
nearby words (Firth, 1957), but words keep com-
pany with physical objects, entities, and situa-
tions as well as with other words. The complete
semantic meaning of many words includes the
world, perceived and represented through physical
modalities such as affect.

For future work, we will expand our reper-
toire of robot emotional displays by producing
novel emotional behaviors for different robot plat-
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forms. We will perform studies to determine what
kinds of emotional behaviors make a robot more
amenable to performing collaborative tasks with
humans, specifically tasks where the robot must
learn new words from human collaborators and
what those words denote. Our work has impli-
cations for how humans interact with robots and
the semantics of the words that robots learn from
humans: the meaning of a word is a function of
what that word refers to in a scope of lexical and
physical context.
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